Avatar
🚀

Follow me on:

Data Science from Scratch - Microreview
Published by Mike Staszel on July 10, 2017

I recently finished reading Data Science from Scratch by Joel Grus. This book is a great introduction to data science concepts. It uses real code to demonstrate complex Python, data analytics, data science, and machine learning concepts.

I’m really glad I picked up this book as the first book I’ve read about machine learning. There was a great combination of mathematics, statistics, and real applications of machine learning algorithms.

The book starts out with a quick introduction to Python, followed by an in-depth review of all the math you need for the code to make sense.

If you’re looking for a book that’ll show you how to use Tensorflow or scikit-learn, this book is not for you. I’d recommend reading this book before diving into those. You’ll learn about the math behind popular machine learning libraries and implement basic versions of some of the most popular algorithms from scratch.

I think the next book I’ll pick up after this one is Python Data Science Handbook which will go into more detail on using a bunch of Python libraries to do some of this machine learning for me.

Featured Posts

  1. A typical modern Spark stack nowadays most likely runs Spark jobs on a Kubernetes cluster, especially for heavy usage. Workloads are moving away from EMR on EC2 to either EMR on EKS or open-source Spark on EKS. When you’re running Spark on EKS, you probably want to scale your Kubernetes nodes up and down as you need them. You might only need to run a few jobs per day, or you might need to run hundreds of jobs, each with different resource requirements.

    aws development kubernetes

  2. Hi there, I’m Mike. 🔭 I’m currently working on big data engineering with Spark on k8s on AWS at iSpot.tv. 🌱 I’m focusing on mentoring and coaching my team to improve their skills and release awesome products. 🌎 I occasionally write blog posts about software engineering and other topics. Management and Software Engineering I consider myself to be a software engineer at heart. Nowadays I’m trying to do less code-writing and more of everything else:

    development